Regulation of Sodium Excretion

June 25, 2016 Cardiology, Critical Care, Nephrology, Physiology and Pathophysiology No comments , , , , , , , , , , , , , , , , , , , , , , , , ,

Percentage of Sodium Reabsorbed

Screen Shot 2016-07-31 at 2.12.05 PM

The Goals of Regulation

The overriding goals of regulating sodium and water excretion are to support the requirements of the cardiovascular system. This is manifested in 3 ways: 1.the kidneys maintain a sufficient ECF volume to fill the vascular space (mean circulatory filling pressure); 2.keep the osmolality of the ECF at a level consistent with cellular health; and 3.limit the changes in renal blood flow (RBF) and GFR that might otherwise reach deleterious levels. The kidneys and the CV system work cooperatively to ensure that peripheral tissue is sufficiently perfused. An adequate circulating volume is one of the essential requirements for tissue perfusion and it is the kidneys that control this volume. Osmolality is the ratio of solute content to water content. Sodium and chloride together account for 80% of the normal extracellular solute; thus the excretion of sodium and water by the kidneys regulates osmolality in the tight range that is needed for the health of tissue cells. There is a separate goal of regulation that differs from those stated above. Variations in RBF and GFR are major means of regulating sodium excretion. However, the kidney cannot change blood flow and filtration to such extreme values that they compromise the metabolic health of the kidneys or interfere with the excretion of substances other than sodium, particularly organic waste.

Formulas for ECF Volume

There are some formulas showing the relationship between ECF solute content, ECF osmolality, and ECF volume. Since almost all of the ECF solute is accounted for by sodium and an equivalent number of anions (mostly chloride and bicarbonate), the amount of ECF solute is approximately twice the sodium content.

ECF osmolality = ECF solute content / ECF volume (Equation 7-1)

ECF volume = ECF solute content / ECF osmolality (Equation 7-2)

ECF volume ≈ 2 x Na content / ECF osmolality (Equation 7-3)

Therefore, in the face of tightly controlled ECF osmolality, ECF volume varies directly with sodium content. But how do the kidneys know how much sodium there is in the ECF? The detection of sodium content is indirect, based on a combination of assessing sodium concentration and vascular pressures. Glial cells in regions of the brain called the circumventricular organs have sensory Na+ channels that respond to and act as detectors of extracellular sodium concentration. The glial cells modulate the activity of nearby neurons involved  in the control of body sodium. There are also neurons in the hypothalamus contain the sensory Na+ channels that respond to the sodium concentration in the cerebrospinal fluid. Thus cells in or near the hypothalamus monitor extracellular sodium concentration.

The volume affects pressure in different regions of the vasculature. It is the presssure baroreceptors in these regions of the vasculature detect the vascular pressures.

Major Controllers of Sodium Excretion

Sympathetic Stimulation 

Vascular pressures are so important in regard to sodium excretion and because volume affect pressure in different regions of the vasculature, so the changes in ECF affects pressures (arterial and/or venous) and changes in pressure affect sodium excretion (Thread "Regulation of Arterial Pressure" at and thread "Mean Circulatory Filling Pressure and CVP" at

The vasculature and tubules of the kidney are innervated by postganglionic sympathetic neurons that release norepinephrine. In most regions of the kidney, norepinephrine is recognized by alpha-adrenergic receptors. In the renal vasculature activation of alpha1-adrenergic recpetors causes vasoconstriction of afferent and efferent arterioles. This reduces RBF and GFR.

GFR is a crucial determinant of sodium excretion. However, except in body emergencies such as hypovolemic shock, GFR is kept within rather narrow limits due to autoregulatory processes (detail for vascular autoregulatory regulation Thus although neural control does affect GFR, this component of sympathetic control is probably less important in normal circumstances than its effect on sodium reabsorption. Neural control of the renal vasculature is exerted primarily on blood flow in the cortex, allowing preservation of medullary perfusion even when cortical blood flow is reduced.

The proximal tubule epithelial cells are innervated by alpha1- and alpha2-adrenergic receptors. Stimulation of these receptors in the proximal tubule by norepinephrine activates both components of the main transcellular sodium reabsorptive pathway, that is, the sodium-hydrogen antiporter NHE3 in the apical membrane and the Na-K-ATPase in the basolateral membrane. The effects of sympathetic stimulation on cells in the distal nephron are less straightforward. However, the overall outcome of sympathetic stimulation of the kidney is clearly reduced sodium excretion.

The Renin-Angiotensin System

AII's function

  • Reduces the RBF and GFR
  • Stimulation of sodium tubular reabsorption
  • Stimulation of the CNS: salt appetite, thirst, and sympathetic drive
  • Stimulation of aldosterone secretion

The major determinant of circulating AII is the amount of renin available to form angiotensin I.

PS: "Control of the Circulating RAAS" is ready at

AII is a potent vasoconstrictor, acting on the vasculature of many peripheral tissues, the effect of which is to raise arterial pressure. It also vasoconstricts both cortical and medullary vessels in the kidney. This reduces total RBF and reduces GFR, thus decreasing the filtered load of sodium.

AII stimulates sodium reabsorption in both the proximal tubule and distal nephron. In the proximal tubule it stimulates the same transcellular transport pathway as does norepinephrine, namely NHE3 sodium/hydrogen antiporter in the apical membrane and the Na-K-ATPase in the basolateral membrane. In the distal tubule and connecting tubule, it stimulates the activity of sodium/chloride symporters and sodium channels (ENaC) that reabsorb sodium.

AII stimulates behavioral actions in response to fluid loss that increase salt appetite and thirst. AII acts on the circumventricular organs in the brain. These function as detectors of many substances in the blood and convey information to various areas of the brain. In situations of volume depletion and low blood pressure, when circulating levels of AII are high, a key effect, in addition to vascular and tubular actions is increased thirst and salt appetite. These pathways also increase sympathetic drive.

Aldosterone is a major stimulator of sodium reabsorption in the distal nephron, that is, regions of the tubule beyond the proximal tubule and loop of Henle. We focus here on the role of aldosterone in sodium reabsorption, but aldosterone has many other important actions, including stimulation of potassium excretion and acid excretion. The most important physiological factor controlling secretion of aldosterone is the circulating level of AII, which stimulates the adrenal cortex to produce aldosterone. But keep in mind that elevated plasma potassium concentration, atrial natriuretic factors are other stimulators of aldosterone secretion. The aldosterone has enough lipid character to freely cross principal cell membrane in the collecting ducts, after which it combines with mineralocorticoid receptors (aldosterone receptors) in the cytoplasm. After being transported to the nucleus, the receptor acts as a transcription factor that promotes gene expression of specific proteins. The effect of these proteins is to increase the activity or number of luminal membrane sodium channels (ENaCs) and basolateral membrane Na-K-ATPase pumps.


Dopaimine inhibits sodium reabsorption in the kidney. The dopamine that acts in the kidney is not released from neurons; rather it is synthesized in proximal tubule cells from the precursor l-DOPA. l-DOPA is taken up from the renal circulation and glomerular filtrate and converted to dopamine in the proximal tubule epithelium, and then released to act in a paracrine manner on nearby cells. Although the signaling path is not clear, it is known that increases in sodium intake lead to increased production of intrarenal dopamine. Dopamine has 2 actions, both of which reduce sodium reabsorption. First, it causes retraction of NHE antiporters and Na-K-ATPase pumps into intracellular vesicles, thereby reducing transcellular sodium reabsorption. Second, it reduces the expression of AII receptors, thereby decreasing the ability of AII to stimulate sodium reabsorption.

Other Controllers of Sodium Excretion


When ADH binds to V2 reecptors in tubular cells, it increases the production of c-AMP. This results in increased activity of the NKCC multiporter in the thick ascending limb and increased sodium channel (ENaC) presence in principal cells of the distal nephron, thereby increasing the uptake of sodium that, in both regions, is actively transported into the interstitium by the Na-K-ATPase. Interestingly, in the distal nephron the mechanism proceeds, not by moving ENaCs into the membrane, but rather by decreasing their removal and degradation.

Glomerulotubular Balance

Glomerulotubular balance (not to be confused with TG feedback described previously) refers to the phenomenon whereby sodium reabsorption in the proximal tubule varies in parallel with the filtered load, such that approximately two thirds of the filtered sodium is reabsorbed even when GFR varies. The mechanism by which reabsorption varies with filtered load appears to be via mechanotransduction by the microvilli on the apical surface of the proximal tubule cells, similar in principle to mechanotransduction by primary cilia in the macula densa. As flow changes, the amount of bending of the microvilli changes, and this is converted by cellular mechanisms into changes in transport.

Pressure Natriuresis and Diuresis

Because the kidneys are responsive to arterial pressure, there are situations in which elevated blood pressure can lead directly to increased excretion of sodium. This phenomenon is called pressure natriuresis, and because natriuresis is usually accompanied by water, it is often called pressure diuresis. This is an intrarenal phenomenon, not requiring external signaling. However, external signals normally override pressure natriuresis.

Natriuretic Peptides

Several tissues in the body synthesize members of a hormone family called natriuretic peptides. Key among these are atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). The main source of both natriuretic peptides is the heart. The natriuretic peptides have both vascular and tubular actions. The relax the afferent arteriole, thereby promoting increased filtration, and act at several sites in the tubule. They inhibit release of renin, inhibit the actions of AII that normally promote reabsorption of sodium, and act in the medullary collecting duct to inhibit sodium absorption. The major stimulus for increased secretion of the natriuretic peptides is distention of the atria, which occurs during plasma volume expansion. This is probably the stimulus for the increased natriuretic peptides that occurs in persons on a high salt diet.

Control of the Circulating RAAS

June 23, 2016 Cardiology, Critical Care, Nephrology, Physiology and Pathophysiology No comments , , , , , , , , ,

The activity of the circulating RAAS is governed by the amount of renin secreted by the granular cells of the jg (juxtaglomerular) apparatus. There are 3 major controllers of renin secretion.

PS: Look at the RAAS, plasma angiotensinogen is synthesized in the liver and plasma angiotensinogen levels are normally high therefore do not limit the production of AII. Furthermore, ACE is expressed on the endothelial surfaces of the vascular system, particularly the pulmonary vessels, and avidly converts most of the angiotensin I into AII. Therefore, the major determinant of circulating AII is the amount of renin available to form angiotensin I.

The first contoller is sympathetic input. Norepinephrine released from postganglionic sympathetic neurons acts on beta1-adrenergic receptors in the granular cells. This activates a c-AMP-mediated pathway that causes the release of renin. The granular cells are quite sensitive to norepinephrine and respond to low levels of sympathetic activity that may have minimal direct effect on the renal vasculature or sodium transport.

The second controller of renin secretion is pressure in the afferent arteriole. The granular cells not only respond to vascular pressures indirectly via adrenergic stimulation, they respond directly to changes in afferent arteriolar pressure. When pressure in the afferent arteriole decreases, renin production increases. Except in cases of major renal arterial blockage, pressure in the arteriolar lumen at the granular cells is close to systemic arterial pressure and changes in parallell with it. Because the granular cells respond to vascular pressure, they are acting as baroreceptors. In fact, the granular cells are the intrarenal baroreceptors. Even though they are not neurons and do not send afferent feedback, they are baroreceptors nevertheless. Consider what happens when arterial pressure drops. The intrarenal baroreceptors (the granular cells) sense the drop in pressure and increase their secretion of renin. Simultaneously, the drop in pressure is also sensed by the arterial baroreceptors in the carotid arteries and aorta. The fall in their afferent signaling allows the vasomotor center to increase sympathetic drive to the granular cells, resulting in a huge combined stimulation of renin secretion.

The third contoller of renin release originates from another component of the jg apparatus; namely the macula densa. The operation of the macula densa is somewhat complicated, but serves as a fascinating example of negative feedback in biological systems. The meacula densa is a detection system and initiator of feedback that helps regulate renin secretion and GFR (tubuloglomerular feedback/TG feedback). For the regulation of GFR please refer to thread "Factors That Affect GFR" at The macula densa is located at the end of the loop of Henle where the tubule passes between the afferent and efferent arterioles of Bowman's capsulre. It is able to sense flow and salt content in the tubular lumen that are the net result of filtration and reabsorption in tubular elements preceding it, that is, it sense "everything done so far." Flow is sensed by cilia that project into the tubular lumen from macula densa cells. Bending of the cilia initiates intracellular signaling that leads to release of paracrine mediators. Tubular sodium chloride is sensed by uptake via Na-K-2Cl multiporters whose action changes ionic concentrations within the macula densa cells and also causes release of paracrine mediators.

When tubular flow and sodium content are high it is as if "the body has too much sodium" and "GFR is too high." The mediators released by the macula densa reduce the secretion of renin (thereby allowing more sodium excretion) and decrease GFR (restoring GFR to an appropriate level). The immediate mediators is ATP, which is converted extracellularly to adenosine. One or both bind to purinergic receptors on the nearby granular cells. This has the effect of increasing intracellular calcium and reducing the release of renin. In turn, the reduction in renin secretion reduces the levels of AII and allows the kidneys to excrete more of the filtered sodium. Simultaneously, the adenosine binds to purinergic receptors on afferent arteriole smooth muscle. The subsequent rise in calcium in these cells stimulates contraction, thus reducing pressure and flow through the glomerular capillaries and reducing GFR.

What happens in the opposite case? Now "the body has too little sodium" and "GFR is too low." This initiates the release of different mediators, specifically prostaglandins and nitric oxide. In the granular cells the prostaglandins stimulate or prolong the lifetime of c-AMP, thereby stimulating the release of renin. In the afferent arterioles NO is a dilator of smooth muscle. The effect is to raise flow and pressure in the glomerular capillaries, and restore GFR to an appropirate level.

The Regular of Extracellular Fluids – ADH Secretion and Renin-Angiotensin System

March 9, 2014 Physiology and Pathophysiology 3 comments , , ,

CaduceusThe volume of ECF is determined primarily by the total amount of osmotically active solute in the ECF. Excessive loss of Na+ in the stools (diarrhea), urine (severe acidosis, adrenal insufficiency), or sweat (heat prostration) decreases ECF volume markedly and eventually leads to shock.

The regular of extracellular fluids is based on vasopressin (ADH) and renin-angiotensin system. The homeostatic mechanisms for controlling blood volume are focused on controlling sodium balance. In contrast, the homeostatic mechanisms for controlling plasma osmolality, which is largely determined by serum sodium concentration, are focused on controlling water balance.

The extracellular and intracellular concentration of sodium and potassium are maintained by Na+-K+-ATPase (although solutes generally cannot freely cross cell membranes) and these maintained concentration determine the osmolality of extracellular and intracellular fluids. Most cell membranes are freely permeable to water, and thus the osmolality of intra- and extracellular body fluids is the same. Otherwise, water will move from the hypotonic compartments to hypertonic compartments.

The Genesis of Osmosis

When a substance is dissolved in water, the concentration of water molecules in the solution is less than that in pure water, because the addition of solute to water results in a solution that occupies a greater volume than dose the water alone. If the solution is placed on one side of a membrane that is permeable to water but not to the solute, and an equal volume of water is placed on the other, water molecules diffuse down their concentration (chemical) gradient into the solution. This process – the diffusion of solvent molecules into a region in which the membrane is impermeable – is called osmosis.

The tendency for movement of solvent molecules to a region of greater solute concentration can be prevented by applying pressure to the more concentrated solution. The pressure necessary to prevent solvent migration is the osmotic pressure of the solution. Just like shown in picture below.

Screen Shot 2014-10-26 at 3.00.36 PM

Control of Vasopressin Secretion

Plasma osmolality and ECF volume can affect the secretion of ADH.

ADH increases the permeability of the collecting ducts of the kidney, so that more water enters the hypertonic interstitium of the renal pyramids and the urine becomes concentrated and its volume decreases (the hypertonic status of renal pyramid interstitium is caused by the “countercurrent mechanism”. The thin descending limb is only permeable to water. And the thick ascending limb has active transport of Na+ and Clwhich makes the intersitium hypertonic).

The overall effect of ADH is retention of water in excess of solute; consequently, the effective osmotic pressure of the body fluids is decreased. In the absence of vasopressin, the urine is hypotonic to plasma, urine volume is increased, and there is a net water loss; consequently, the osmolality of the body fluid rises.

The secretion of ADH is controlled by mechanisms of osmotic stimuli and volume feedback effect.

When effective osmotic pressure of the plasma is increased above 285 mOsm/kg, the rate of discharge of neurons containing vasopressin increases and vasopressin secretion occurs. Generally, at 285 mOsm/kg, plasma vasopressin is at or near the limits of detection by available assays.

Meanwhile, as plasma osmolality increases, the feeling of thirst gets stronger and people will take more water. The osmotic threshold for thirst is the same as or slightly greater than the threshold for increased vasopressin secretion.

A decreased extracellular volume or major decrease in arterial pressure reflexively activates increased ADH secretion. To say strictly, the effective circulating blood volume affeccts ADH secretion via volume receptors. These receptors are located in low- and high-pressure portions of the vascular system. The response is mediated by neural pathways originating in cardiopulmonary baroreceptors, and if arterial pressure decreases, from arterial baroreceptors. There is an inverse relationship between the rate of ADH secretion and the rate of discharge in afferents from stretch receptors. AngII reinforces the response to hypovolemia and hypotension by acting on the circumventricular organs to increase ADH secretion (but it is not certain which of the circumventricular organs are responsible for the increases in ADH secretion).

Also, volume effects have an inverse relationship with the feeling of thirst (probably by the increased level of ang II).

Some other factors such as pain, nausea, surgical stress, and emotions would affect the secretion of ADH. Alcohol decreases ADH secretion.

Control of Renin-Angiotensin System

The most important angiotensin is ang II. In physiology,

angiotensin II produces arteriolar constriction and a rise in systolic and diastolic blood pressure.

Ang II also acts directly on the adrenal cortex to increase the secretion of aldosterone.

Besides, ang II acts on the brain to decrease the sensitivity of the baroreflex, which potentiates the pressor effect of ang II.

Ang II acts on the brain to increase water intake and increase the secretion of ADH.

In general, four factors regulate the secretion of rennin and the resultant ang II and aldosterone. When arteriolar pressure at the level of the JG cells falls, renin secretion is enhanced. Renin secretion is inversely proportional to the amount of Na+ and Cl entering the distal renal tubules from the loop of Henle. Besides, ang II fees back to inhibit renin secretion by a direct action on the JG cells. Finally, increased activity of the sympathetic nervous system increases renin secretion.

Additional Information (updated on Jun 12th 2014)


Water intake is increased by increased effective osmotic pressure of the plasma and by decrease in ECF volume (to say strictly, the effective circulating blood volume) and the impact of effective circulating blood volume >the one of effective osmotic pressure (and the Plasma Osmolality – ADH Secretion cluve shifts to the left by decreased effective circulating blood volume).

Osmolality acts via osmoreceptors, receptors that sense the osmolality of the body fluids (more accurately, the plasma). These osmoreceptors are located in the anterior hypothalamus. Decrease in ECF volume stimulate thirst by a pathway independent of that mediating thirst in response to increased plasma osmolality. Generally, the effect of ECF volume depletion on thirst is mediated in part via the rennin-angiotensin system. The angII acts on the subfornical organ (one of the circumventricular organs of the brain), a specialized receptor area in the diencephalon, to stimulate the neural area concerned with thirst. Some evidence suggests that it acts on the OVLT (no BBB) as well.

However, drugs that block the action of angII do not completely block the thirst response to hypovolemia (and decreased effective circulatory pressure).