RAAS

Regulation of Sodium Excretion

June 25, 2016 Cardiology, Critical Care, Nephrology, Physiology and Pathophysiology No comments , , , , , , , , , , , , , , , , , , , , , , , , ,

Percentage of Sodium Reabsorbed

Screen Shot 2016-07-31 at 2.12.05 PM

The Goals of Regulation

The overriding goals of regulating sodium and water excretion are to support the requirements of the cardiovascular system. This is manifested in 3 ways: 1.the kidneys maintain a sufficient ECF volume to fill the vascular space (mean circulatory filling pressure); 2.keep the osmolality of the ECF at a level consistent with cellular health; and 3.limit the changes in renal blood flow (RBF) and GFR that might otherwise reach deleterious levels. The kidneys and the CV system work cooperatively to ensure that peripheral tissue is sufficiently perfused. An adequate circulating volume is one of the essential requirements for tissue perfusion and it is the kidneys that control this volume. Osmolality is the ratio of solute content to water content. Sodium and chloride together account for 80% of the normal extracellular solute; thus the excretion of sodium and water by the kidneys regulates osmolality in the tight range that is needed for the health of tissue cells. There is a separate goal of regulation that differs from those stated above. Variations in RBF and GFR are major means of regulating sodium excretion. However, the kidney cannot change blood flow and filtration to such extreme values that they compromise the metabolic health of the kidneys or interfere with the excretion of substances other than sodium, particularly organic waste.

Formulas for ECF Volume

There are some formulas showing the relationship between ECF solute content, ECF osmolality, and ECF volume. Since almost all of the ECF solute is accounted for by sodium and an equivalent number of anions (mostly chloride and bicarbonate), the amount of ECF solute is approximately twice the sodium content.

ECF osmolality = ECF solute content / ECF volume (Equation 7-1)

ECF volume = ECF solute content / ECF osmolality (Equation 7-2)

ECF volume ≈ 2 x Na content / ECF osmolality (Equation 7-3)

Therefore, in the face of tightly controlled ECF osmolality, ECF volume varies directly with sodium content. But how do the kidneys know how much sodium there is in the ECF? The detection of sodium content is indirect, based on a combination of assessing sodium concentration and vascular pressures. Glial cells in regions of the brain called the circumventricular organs have sensory Na+ channels that respond to and act as detectors of extracellular sodium concentration. The glial cells modulate the activity of nearby neurons involved  in the control of body sodium. There are also neurons in the hypothalamus contain the sensory Na+ channels that respond to the sodium concentration in the cerebrospinal fluid. Thus cells in or near the hypothalamus monitor extracellular sodium concentration.

The volume affects pressure in different regions of the vasculature. It is the presssure baroreceptors in these regions of the vasculature detect the vascular pressures.

Major Controllers of Sodium Excretion

Sympathetic Stimulation 

Vascular pressures are so important in regard to sodium excretion and because volume affect pressure in different regions of the vasculature, so the changes in ECF affects pressures (arterial and/or venous) and changes in pressure affect sodium excretion (Thread "Regulation of Arterial Pressure" at http://www.tomhsiung.com/wordpress/2016/06/physiology-regulation-of-arterial-pressure/ and thread "Mean Circulatory Filling Pressure and CVP" at http://www.tomhsiung.com/wordpress/2016/06/mean-circulatory-filling-pressure-and-cvp/).

The vasculature and tubules of the kidney are innervated by postganglionic sympathetic neurons that release norepinephrine. In most regions of the kidney, norepinephrine is recognized by alpha-adrenergic receptors. In the renal vasculature activation of alpha1-adrenergic recpetors causes vasoconstriction of afferent and efferent arterioles. This reduces RBF and GFR.

GFR is a crucial determinant of sodium excretion. However, except in body emergencies such as hypovolemic shock, GFR is kept within rather narrow limits due to autoregulatory processes (detail for vascular autoregulatory regulation http://www.tomhsiung.com/wordpress/2015/07/arteriolar-tone-and-its-regulation-local-mechanisms/). Thus although neural control does affect GFR, this component of sympathetic control is probably less important in normal circumstances than its effect on sodium reabsorption. Neural control of the renal vasculature is exerted primarily on blood flow in the cortex, allowing preservation of medullary perfusion even when cortical blood flow is reduced.

The proximal tubule epithelial cells are innervated by alpha1- and alpha2-adrenergic receptors. Stimulation of these receptors in the proximal tubule by norepinephrine activates both components of the main transcellular sodium reabsorptive pathway, that is, the sodium-hydrogen antiporter NHE3 in the apical membrane and the Na-K-ATPase in the basolateral membrane. The effects of sympathetic stimulation on cells in the distal nephron are less straightforward. However, the overall outcome of sympathetic stimulation of the kidney is clearly reduced sodium excretion.

The Renin-Angiotensin System

AII's function

  • Reduces the RBF and GFR
  • Stimulation of sodium tubular reabsorption
  • Stimulation of the CNS: salt appetite, thirst, and sympathetic drive
  • Stimulation of aldosterone secretion

The major determinant of circulating AII is the amount of renin available to form angiotensin I.

PS: "Control of the Circulating RAAS" is ready at http://www.tomhsiung.com/wordpress/2016/06/control-of-the-circulating-raas/

AII is a potent vasoconstrictor, acting on the vasculature of many peripheral tissues, the effect of which is to raise arterial pressure. It also vasoconstricts both cortical and medullary vessels in the kidney. This reduces total RBF and reduces GFR, thus decreasing the filtered load of sodium.

AII stimulates sodium reabsorption in both the proximal tubule and distal nephron. In the proximal tubule it stimulates the same transcellular transport pathway as does norepinephrine, namely NHE3 sodium/hydrogen antiporter in the apical membrane and the Na-K-ATPase in the basolateral membrane. In the distal tubule and connecting tubule, it stimulates the activity of sodium/chloride symporters and sodium channels (ENaC) that reabsorb sodium.

AII stimulates behavioral actions in response to fluid loss that increase salt appetite and thirst. AII acts on the circumventricular organs in the brain. These function as detectors of many substances in the blood and convey information to various areas of the brain. In situations of volume depletion and low blood pressure, when circulating levels of AII are high, a key effect, in addition to vascular and tubular actions is increased thirst and salt appetite. These pathways also increase sympathetic drive.

Aldosterone is a major stimulator of sodium reabsorption in the distal nephron, that is, regions of the tubule beyond the proximal tubule and loop of Henle. We focus here on the role of aldosterone in sodium reabsorption, but aldosterone has many other important actions, including stimulation of potassium excretion and acid excretion. The most important physiological factor controlling secretion of aldosterone is the circulating level of AII, which stimulates the adrenal cortex to produce aldosterone. But keep in mind that elevated plasma potassium concentration, atrial natriuretic factors are other stimulators of aldosterone secretion. The aldosterone has enough lipid character to freely cross principal cell membrane in the collecting ducts, after which it combines with mineralocorticoid receptors (aldosterone receptors) in the cytoplasm. After being transported to the nucleus, the receptor acts as a transcription factor that promotes gene expression of specific proteins. The effect of these proteins is to increase the activity or number of luminal membrane sodium channels (ENaCs) and basolateral membrane Na-K-ATPase pumps.

Dopamine

Dopaimine inhibits sodium reabsorption in the kidney. The dopamine that acts in the kidney is not released from neurons; rather it is synthesized in proximal tubule cells from the precursor l-DOPA. l-DOPA is taken up from the renal circulation and glomerular filtrate and converted to dopamine in the proximal tubule epithelium, and then released to act in a paracrine manner on nearby cells. Although the signaling path is not clear, it is known that increases in sodium intake lead to increased production of intrarenal dopamine. Dopamine has 2 actions, both of which reduce sodium reabsorption. First, it causes retraction of NHE antiporters and Na-K-ATPase pumps into intracellular vesicles, thereby reducing transcellular sodium reabsorption. Second, it reduces the expression of AII receptors, thereby decreasing the ability of AII to stimulate sodium reabsorption.

Other Controllers of Sodium Excretion

ADH

When ADH binds to V2 reecptors in tubular cells, it increases the production of c-AMP. This results in increased activity of the NKCC multiporter in the thick ascending limb and increased sodium channel (ENaC) presence in principal cells of the distal nephron, thereby increasing the uptake of sodium that, in both regions, is actively transported into the interstitium by the Na-K-ATPase. Interestingly, in the distal nephron the mechanism proceeds, not by moving ENaCs into the membrane, but rather by decreasing their removal and degradation.

Glomerulotubular Balance

Glomerulotubular balance (not to be confused with TG feedback described previously) refers to the phenomenon whereby sodium reabsorption in the proximal tubule varies in parallel with the filtered load, such that approximately two thirds of the filtered sodium is reabsorbed even when GFR varies. The mechanism by which reabsorption varies with filtered load appears to be via mechanotransduction by the microvilli on the apical surface of the proximal tubule cells, similar in principle to mechanotransduction by primary cilia in the macula densa. As flow changes, the amount of bending of the microvilli changes, and this is converted by cellular mechanisms into changes in transport.

Pressure Natriuresis and Diuresis

Because the kidneys are responsive to arterial pressure, there are situations in which elevated blood pressure can lead directly to increased excretion of sodium. This phenomenon is called pressure natriuresis, and because natriuresis is usually accompanied by water, it is often called pressure diuresis. This is an intrarenal phenomenon, not requiring external signaling. However, external signals normally override pressure natriuresis.

Natriuretic Peptides

Several tissues in the body synthesize members of a hormone family called natriuretic peptides. Key among these are atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). The main source of both natriuretic peptides is the heart. The natriuretic peptides have both vascular and tubular actions. The relax the afferent arteriole, thereby promoting increased filtration, and act at several sites in the tubule. They inhibit release of renin, inhibit the actions of AII that normally promote reabsorption of sodium, and act in the medullary collecting duct to inhibit sodium absorption. The major stimulus for increased secretion of the natriuretic peptides is distention of the atria, which occurs during plasma volume expansion. This is probably the stimulus for the increased natriuretic peptides that occurs in persons on a high salt diet.

Control of the Circulating RAAS

June 23, 2016 Cardiology, Critical Care, Nephrology, Physiology and Pathophysiology No comments , , , , , , , , ,

The activity of the circulating RAAS is governed by the amount of renin secreted by the granular cells of the jg (juxtaglomerular) apparatus. There are 3 major controllers of renin secretion.

PS: Look at the RAAS, plasma angiotensinogen is synthesized in the liver and plasma angiotensinogen levels are normally high therefore do not limit the production of AII. Furthermore, ACE is expressed on the endothelial surfaces of the vascular system, particularly the pulmonary vessels, and avidly converts most of the angiotensin I into AII. Therefore, the major determinant of circulating AII is the amount of renin available to form angiotensin I.

The first contoller is sympathetic input. Norepinephrine released from postganglionic sympathetic neurons acts on beta1-adrenergic receptors in the granular cells. This activates a c-AMP-mediated pathway that causes the release of renin. The granular cells are quite sensitive to norepinephrine and respond to low levels of sympathetic activity that may have minimal direct effect on the renal vasculature or sodium transport.

The second controller of renin secretion is pressure in the afferent arteriole. The granular cells not only respond to vascular pressures indirectly via adrenergic stimulation, they respond directly to changes in afferent arteriolar pressure. When pressure in the afferent arteriole decreases, renin production increases. Except in cases of major renal arterial blockage, pressure in the arteriolar lumen at the granular cells is close to systemic arterial pressure and changes in parallell with it. Because the granular cells respond to vascular pressure, they are acting as baroreceptors. In fact, the granular cells are the intrarenal baroreceptors. Even though they are not neurons and do not send afferent feedback, they are baroreceptors nevertheless. Consider what happens when arterial pressure drops. The intrarenal baroreceptors (the granular cells) sense the drop in pressure and increase their secretion of renin. Simultaneously, the drop in pressure is also sensed by the arterial baroreceptors in the carotid arteries and aorta. The fall in their afferent signaling allows the vasomotor center to increase sympathetic drive to the granular cells, resulting in a huge combined stimulation of renin secretion.

The third contoller of renin release originates from another component of the jg apparatus; namely the macula densa. The operation of the macula densa is somewhat complicated, but serves as a fascinating example of negative feedback in biological systems. The meacula densa is a detection system and initiator of feedback that helps regulate renin secretion and GFR (tubuloglomerular feedback/TG feedback). For the regulation of GFR please refer to thread "Factors That Affect GFR" at http://www.tomhsiung.com/wordpress/2014/04/factors-that-affect-gfr/. The macula densa is located at the end of the loop of Henle where the tubule passes between the afferent and efferent arterioles of Bowman's capsulre. It is able to sense flow and salt content in the tubular lumen that are the net result of filtration and reabsorption in tubular elements preceding it, that is, it sense "everything done so far." Flow is sensed by cilia that project into the tubular lumen from macula densa cells. Bending of the cilia initiates intracellular signaling that leads to release of paracrine mediators. Tubular sodium chloride is sensed by uptake via Na-K-2Cl multiporters whose action changes ionic concentrations within the macula densa cells and also causes release of paracrine mediators.

When tubular flow and sodium content are high it is as if "the body has too much sodium" and "GFR is too high." The mediators released by the macula densa reduce the secretion of renin (thereby allowing more sodium excretion) and decrease GFR (restoring GFR to an appropriate level). The immediate mediators is ATP, which is converted extracellularly to adenosine. One or both bind to purinergic receptors on the nearby granular cells. This has the effect of increasing intracellular calcium and reducing the release of renin. In turn, the reduction in renin secretion reduces the levels of AII and allows the kidneys to excrete more of the filtered sodium. Simultaneously, the adenosine binds to purinergic receptors on afferent arteriole smooth muscle. The subsequent rise in calcium in these cells stimulates contraction, thus reducing pressure and flow through the glomerular capillaries and reducing GFR.

What happens in the opposite case? Now "the body has too little sodium" and "GFR is too low." This initiates the release of different mediators, specifically prostaglandins and nitric oxide. In the granular cells the prostaglandins stimulate or prolong the lifetime of c-AMP, thereby stimulating the release of renin. In the afferent arterioles NO is a dilator of smooth muscle. The effect is to raise flow and pressure in the glomerular capillaries, and restore GFR to an appropirate level.

Physiologic Adapations and Maladaptations in Heart Failure

October 20, 2015 Cardiology, Physiology and Pathophysiology No comments , , , , , , , , , , , , , , , , ,

Basic Concepts

Preload

The concept of preload in the intact heart was described by physiologists Frank and Starling a century ago. The preload can be though of as the amount of myocardial stretch at the end of diastole, just before contraction. Measurements that correlate with myocardial stretch, and that are often used to indicate the preload on the horizontal axis, are the ventricular end-diastolic volume (EDV).

Afterload

Afterload in the intact heart reflects the resistance that the ventricle must overcome to empty its contents. It is more formally defined as the ventricular wall stress that develops during systolic ejection. Wall stress (σ), like pressure, is expressed as force per unit area and, for the left ventricle, may be estimated from Laplace relationship:

σ = (P x r)/(2 x h)

where P is ventricular pressure, r is ventricular chamber radius, and h is ventricular wall thickness. Thus, ventricular wall stress rises in response to a higher pressure load (e.g., hypertension) or an increased chamber size (e.g., a dilated left ventricle). Conversely, as would be expected from Laplace relationship, an increase in wall thickness (h) serves a compensatory role in reducing wall stress, because the force is distributed over a greater mass per unit surface area of ventricular muscle.


Pathophysiology of Heart Failure

The pathophysiology of heart failure is complex and must be understood at multiple levels. Traditionally, research has focused on the hemodynamic changes of the failing heart, considering the heart as an isolated organ. However, studies of the failing heart have emphasized the importance of understanding changes at the cellular level and the neuro-hormonal interactions between the heart and other organs of the body.

Hemodynamic Changes

From a hemodynamic standpoint, heart failure can arise from worsening systolic or diastolic function or, more frequently, a combination of both.

Systolic Dysfunction

In systolic dysfunction, the isovolumic systolic pressure curve of the pressure-volume relationship is shifted downward (A). This reduce the stroke volume of the heart with a concomitant decrease in cardiac output. To maintain cardiac output, the heart can respond with three compensatory mechanisms:

1.Increased return of blood to the heart (preload) can lead to increased contraction of sarcomeres. In the pressure-volume relationship, the heart operates at a' instead of a, and stroke volume increases, but at the cost of increased end-diastolic pressure (D).

2.Second, increase release of catecholamines can increase cardiac output by both increasing the heart rate and shifting the systolic isovolumetric curve to the left (C).

3.Cardiac muscle can hypertrophy and ventricular volume can increase, which shifts the diastolic curve to the right (B).

Screen Shot 2015-10-18 at 7.15.43 PMAlthough each of these compensatory mechanisms can temporarily maintain cardiac output, each is limited in its ability to do so, and if the underlying reason for systolic dysfunction remains untreated, the heart ultimately fails.

Diastolic Dysfunction

Screen Shot 2015-10-18 at 8.49.51 PMIn diastolic dysfunction, the position of the systolic isovolumic curve remains unchanged (contractility of the myocytes is preserved). However, the diastolic pressure-volume curve is shift to the left, with an accompanying increase in left ventricular end-diastolic pressure and symptoms of heart failure. Diastolic dysfunction can be present in any disease that causes decreased relaxation, decreased elastic recoil, or increased stiffness of the ventricle.

Neurohormonal Changes

After an injury to the heart, increased secretion of endogenous neurohormones and cytokines is observed. Initially, increased activity of the adrenergic system and the renin-angiotensin system provides a compensatory response that maintains perfusion of vital organs. However, over time these changes can lead to progressive deterioration of cardiac function.

Sympathetic Nervous System

Increased sympathetic activity occurs early in the development of heart failure. Elevated plasma norepinephrine levels cause increased cardiac contractility and an increased heart rate that initially help maintain cardiac output. However, continued increases lead to increased preload (as a result of venous vasoconstriction) and afterload (from arterial vasoconstriction), which can worsen heart failure. In addition, sympathetic hyperactivity causes deleterious cellular changes.

RAAS

Reduced renal blood pressure stimulates the release of renin and increases the production of angiotensin II. Both angiotensin II and sympathetic activation cause efferent glomerular arteriolar vasoconstriction, which helps maintain the glomerular filtration rate despite a reduced cardiac output. Angiotensin II stimulates aldosterone synthesis, which leads to sodium resorption and potassium excretion by the kidneys. However, a vicious circle is initiated as continued hyperactivity of the renin-angiotensin system leads to severe vasoconstriction, increased afterload, and further reduction in cardiac output and glomerular filtration rate.

ADH

Heart failure is associated with increases release of vasopressin from the posterior pituitary gland. Vasopressin is another powerful vasoconstrictor that also promotes reabsorption of water in the renal tubules (collecting ducts).

Cytokines and Others

Heart failure is associated with the release of cytokines and other circulating peptides. Cytokines are a heterogeneous family of proteins that are secreted by macrophages, lymphocytes, monocytes, and endothelial cells in response to injury. The interleukins (ILs) and tumor necrosis factor (TNF) are the two major groups of cytokines that may have an important pathophysiologic role in heart failure. Upregulation of the gene responsible for TNF with an acompanying increase in circulating plasma levels of TNF has been found in patients with hear failure. TNF appears to have an important role in the cycle of myocyte hypertrophy and cell death (apoptosis). Preliminary in vitro data suggest that IL-1 may accelerate myoctye hypertrophy. Another peptide important for mediating some of the pathophysiologic effects observed in heart failure is the potent vasoconstrictor endothelin, which is released from endothelial cells. Preliminary data have suggested that excessive endothelin release may be responsible for hypertension in the pulmonary arteries observed in patients with left ventricular heart failure. Endothelin is also associated with myocyte growth and deposition of collagen in the interstitial matrix.

Cellular Changes

Pathophysiologic chanages at the cellular level are very complex and include changes in Ca2+ handling, adrenergic receptros, contractile apparatus, and myocyte structure.

Ca2+ Handling

In heart failure, both delivery of Ca2+ to the contractle apparatus and reuptake of Ca2+ by the sarcoplasmic reticulum are slowed. Decreased levels of messenger ribonucleic acid (mRNA) for the specialized Ca2+ release channels have been reported by some investigators. Similarly, myocytes from failing hearts have reduced levels of mRNA for the two sarcoplasmic reticulum proteins phospholamban and Ca2+-ATPase.

Changes of Adrenergic Receptors

Two major classes of adrengeric receptors are found in the human heart. Alpha1-adrenergic receptors are important for induction of myocardial hypertrophy; levels of alpha1 receptors are slightly increased in heart failure. Heart failure is associated with significant beta-adrenergic receptor desensitization as a result of chronic sympathetic activation. This effect is mediated by downregulation of beta1-adrenergic receptors, downstream uncoupling of the signal transducton pathway, and upregulation of inhibitory G proteins. All of these changes lead to a further reduction in myocyte contractility.

Contractile Apparatus

Cardiac myocytes cannot proliferate once they have matured to their adult form. However, these is a constant turnover of the contractile proteins that make up the sarcomere. In response to the hemodynamic stresss associated with heart failure, angiotensin II, TNF, norepinephrine, and other molecules induce protein synthesis via intranuclear mediators of gene activity. This causes myoctye hypertrophy with an increase in sarcomere numbers and a re-expression of tetal and neonatal forms of myosin and troponin. Activation of this primitive program results in the development of large myocytes that do not contract normally and have decreased ATPase activity.

Myocyte Structure Changes

The heart enarges in response to continued hemodynamic stress. Changes in myocardial size and shape associated with heart failure are collectively referred to as left ventricular remodeling. Several tissue is associated with myocyte loss via a process of necrosis, apoptosis (programmed cell death). Unlike the process of necrosis, apoptotic cells initially demonstrate decreased cell volume without disrutpion of the cell membrane. However, as the apoptotic process continues, the myocyte ultimately dies, and "holes" are left in the myocardium. Loss of myocytes places increased stress on the remaining myoctes. The process of apoptosis is accelerated by the proliferative signals that stimulate myocyte hypertrophy such as TNF. Although apoptosis is a normal process that is essential in organs made up of proliferating cells, in the heart apoptosis initiates a vicious circle whereby cell death causes increased stress that leads to hypertrophy and further acceleraton of apoptosis.

A second tissue change observed in heart failure is an increased amount of fibrous tissue in the interstitial spaces of the heart. Collagen deposition is due to activation of fibroblasts and myocyte death. Endothelin release leads to interstitial collagen deposition. The increase in connective tissue increase chamber siffness and shifts the diastolic pressure-volume curve to the left.

Finally, heart failure is associated with gradual dilation of the ventricle. Myocyte "slippage" as a result of activation of collagenases that disrupt the collagen network may be responsible for this process.