Nitric Oxide

ASH Guideline for RBC Transfusion

July 13, 2016 Critical Care, Hematology, Transfusion No comments , , , , , ,

The Guideline

The development of clinical practice guidelines for RBC transfusion has been challenged by a limited availability of high-quanlity evidence to support practice recommendations. There is general agreement that RBC transfusion is typically not indicated for hemoglobin (Hgb) levels of >10 g/dL and that transfusion of RBCs should be considered when Hb is <7 to 8 g/dL depending on patient characteristics. The decision to transfuse RBCs should be based on a clinical assessment of the patient that weighs the risks associated with transfusion aganist the anticipated benefit. As more studies addressing RBC transfusion become available, it becomes increasely clear that liberal transfusion strategies are not necessarily associated with superior outcomes and may expose patients to unnecessary risks.

The most recently published guidelines from the AABB (formerly the American Association of Blood Bank) are based on a systematic review of randomized, controlled trials evaluating transfusion thresholds. These guidelines recommend adhering to a restrictive transfusion stratety and consider transfusion when Hb is 7 to 8 g/dL in hospitalized, stable patients. This strong recommendation is based on high-quality evidence from clinical trials comparing outcomes in liberal versus restrictive transfusion strategies in this patient population. A restrictive transfusion strategy is also recommended for patients with preexisting cardiovascular disease. In this population, transfusion should be considered when Hb levels are <8 g/dL or for symptoms such as chest pain, orthostatic hypotension, tachycardia unresponsive to fluid resuscitation, or congestive heart failure. This weak recommendation is based on moderate-quality evidence due to limited clinical trial data directly addressing this population of patients. Additional clinical practice guidelines exist that specify Hb targets for critical care patients with conditions including sepsis, ischemic stroke, and acute coronary syndrome.

RBC transfusion is indicated in patients who are actively bleeding and should be based on clinical assessment of the patient in addition to laboratory testing. Much remains to be learned about the optimal resuscitation of the bleeding patient. However, a recent study examining transfusion in patients with active upper gastrointestinal bleeding showed superior outcomes in patients treated with a restrictive transfusion strategy (<7 g/dL).

The Physiologic Response to Anemia

The initial response to anemia is a shift in the oxygen dissociation curve to the right as modulated by an increase in production of 2,3-DPG in RBCs. This shift allows for the unloading of oxygen to the tissues at higher partial pressures of oxygen, ensuring adequate oxygen delivery despite the reduction in RBC mass.

As anemia progresses, the cardiac output will increase by an increase in the heart rate to preserve the delivery of oxygen in the setting of decreased oxygen content. As RBC mass is reduced in anemia, the viscosity of the blood decreases. This reduction in viscosity leads to an increase in regional blood flow at the tissue and organ level, driving up local perfusion area and pressures leading to increased oxygen extraction. While a change in viscosity may be the trigger for increased regional blood flow, there has been suggestion that local blood vessel dilatation may be mediated by the release of nitric oxide (NO) from the RBCs. In order for these mechanisms to work properly, the patient must be at or near a euvolemic state. In considering these regulatory mechanisms, it is important to understand that the transfusion of RBCs will incease viscosity by adding stored RBCs that may not have the same vasoactive capabilities of native RBCs. As such, a transfusion of RBCs may inhibit compensatory mechanisms for low oxygen states, without significiantly increasing oxygen delivery.

There is evidence that low levels of Hb can be tolerated in healthy subjects. Hematocrits of 10% to 20% have been achieved in experimental studies using normovolemic hemodilution without untoward effects. Weiskopf and colleagues studied patients who underwent isovolemic reduction of Hb to 7, 6, and 5 g/dL. No evidence of reduced oxygen delivery was detected at any of the tested values of Hb; however, there was a subtle reversible reduction in reaction time and impaired immediate and delayed memory observed at Hb below 6 g/dL. An important source of data regarding the impact of anemia on surgical outcome comes from studies of Jehovah's Witness patients. Carson has demonstrated that the risk of death in these pateints at Hb between 7 and 8 g/dL is low. However, the odds of death increase by 2.5 for each gram decrease in Hb below 8 g/dL. The mortality is very high at Hb levels below 5 g/dL. It should be noted that these data are from patients who refuse all RBC transfusions. There is time to intervene between a low Hb and resulting morbidity or mortality in most patients.

Control of the Circulating RAAS

June 23, 2016 Cardiology, Critical Care, Nephrology, Physiology and Pathophysiology No comments , , , , , , , , ,

The activity of the circulating RAAS is governed by the amount of renin secreted by the granular cells of the jg (juxtaglomerular) apparatus. There are 3 major controllers of renin secretion.

PS: Look at the RAAS, plasma angiotensinogen is synthesized in the liver and plasma angiotensinogen levels are normally high therefore do not limit the production of AII. Furthermore, ACE is expressed on the endothelial surfaces of the vascular system, particularly the pulmonary vessels, and avidly converts most of the angiotensin I into AII. Therefore, the major determinant of circulating AII is the amount of renin available to form angiotensin I.

The first contoller is sympathetic input. Norepinephrine released from postganglionic sympathetic neurons acts on beta1-adrenergic receptors in the granular cells. This activates a c-AMP-mediated pathway that causes the release of renin. The granular cells are quite sensitive to norepinephrine and respond to low levels of sympathetic activity that may have minimal direct effect on the renal vasculature or sodium transport.

The second controller of renin secretion is pressure in the afferent arteriole. The granular cells not only respond to vascular pressures indirectly via adrenergic stimulation, they respond directly to changes in afferent arteriolar pressure. When pressure in the afferent arteriole decreases, renin production increases. Except in cases of major renal arterial blockage, pressure in the arteriolar lumen at the granular cells is close to systemic arterial pressure and changes in parallell with it. Because the granular cells respond to vascular pressure, they are acting as baroreceptors. In fact, the granular cells are the intrarenal baroreceptors. Even though they are not neurons and do not send afferent feedback, they are baroreceptors nevertheless. Consider what happens when arterial pressure drops. The intrarenal baroreceptors (the granular cells) sense the drop in pressure and increase their secretion of renin. Simultaneously, the drop in pressure is also sensed by the arterial baroreceptors in the carotid arteries and aorta. The fall in their afferent signaling allows the vasomotor center to increase sympathetic drive to the granular cells, resulting in a huge combined stimulation of renin secretion.

The third contoller of renin release originates from another component of the jg apparatus; namely the macula densa. The operation of the macula densa is somewhat complicated, but serves as a fascinating example of negative feedback in biological systems. The meacula densa is a detection system and initiator of feedback that helps regulate renin secretion and GFR (tubuloglomerular feedback/TG feedback). For the regulation of GFR please refer to thread "Factors That Affect GFR" at http://www.tomhsiung.com/wordpress/2014/04/factors-that-affect-gfr/. The macula densa is located at the end of the loop of Henle where the tubule passes between the afferent and efferent arterioles of Bowman's capsulre. It is able to sense flow and salt content in the tubular lumen that are the net result of filtration and reabsorption in tubular elements preceding it, that is, it sense "everything done so far." Flow is sensed by cilia that project into the tubular lumen from macula densa cells. Bending of the cilia initiates intracellular signaling that leads to release of paracrine mediators. Tubular sodium chloride is sensed by uptake via Na-K-2Cl multiporters whose action changes ionic concentrations within the macula densa cells and also causes release of paracrine mediators.

When tubular flow and sodium content are high it is as if "the body has too much sodium" and "GFR is too high." The mediators released by the macula densa reduce the secretion of renin (thereby allowing more sodium excretion) and decrease GFR (restoring GFR to an appropriate level). The immediate mediators is ATP, which is converted extracellularly to adenosine. One or both bind to purinergic receptors on the nearby granular cells. This has the effect of increasing intracellular calcium and reducing the release of renin. In turn, the reduction in renin secretion reduces the levels of AII and allows the kidneys to excrete more of the filtered sodium. Simultaneously, the adenosine binds to purinergic receptors on afferent arteriole smooth muscle. The subsequent rise in calcium in these cells stimulates contraction, thus reducing pressure and flow through the glomerular capillaries and reducing GFR.

What happens in the opposite case? Now "the body has too little sodium" and "GFR is too low." This initiates the release of different mediators, specifically prostaglandins and nitric oxide. In the granular cells the prostaglandins stimulate or prolong the lifetime of c-AMP, thereby stimulating the release of renin. In the afferent arterioles NO is a dilator of smooth muscle. The effect is to raise flow and pressure in the glomerular capillaries, and restore GFR to an appropirate level.

Arteriolar Tone and Its Regulation (Local Mechanisms)

July 17, 2015 Cardiology, Physiology and Pathophysiology No comments , , , , , , , , , , , , , , , , ,

jesus-christ-0202

I.Arteriolar Tone

A.Basal tone

B.ANS

C.Adrenal Glands

D.Local

1.Metabolic substances

2.Endothelial cells secretion

3.Other local chemical influences

4.Transmural pressure (myogenic response)

II.Venous Tone

A.Basal tone (little)

B.ANS

C.Adrenal glands

D.Internal pressure (recall deltaV/deltaP = C)

E.External compression (muscle pump)


Because the body's needs are continually changing, the cardiovascular system must continually make adjustments in the diameter of its vessels. The purposes of these vascular change are 1.to efficiently distribute the cardiac output among tissues with different current needs (the job of arterioles) and 2.to regulate the distribute of blood volume and cardiac filling (the job of veins). So besides central regulatory mechanisms for vascular system (CNS, autonomic nerves system) and hormonal regulatory mechanisms (RAAS/angII and vasopressin, natriuretic hormone, insulin resistance and hyperinsulinemia, circulating catecholamines), there are another vascular regulatory mechanism – peripheral regulatory mechanisms/local mechanisms.

Total peripheral resistance (TPR) is determined by resistances of each primary organs and tissues, whereas resistance of an single organ or tissue region is primarily determined by resistances of arterioles that distribute within this organ or tissue. Therefore, TPR is determined primarily by resistance of arterioles. According to the famous Hagen–Poiseuille equation, resistance to flow is inversely and directly related to the radius of the vessel.

(Note: Q = ΔP/R, and R is resistance of the vessel)

Because resistances of arterioles are so important for TPR and the resultant blood flow (Q), we need to study the characteristics of arteriolar resistance carefully. Vascular tone is a term commonly used to characterize the general contractile state (so the radius of the vessel) or a vascular region. The "vascular tone" of a region can be taken as an indication of the "level of activation" of the individual smooth muscle cells in that region. Because the blood flow through any organ is determined largely by its vascular resistance, which dependent primarily on the diameter of its arterioles, thus an organ's flow is controlled by factors that influence the arteriolar smooth muscle tone.

Arterioles remain in a state of partial constriction even all external influences on them are removed; hence, they are said to have a degree of basal tone. The understanding of the mechanism is incomplete, but basal arteriolar tone may be a reflection of the fact that smooth muscle cells inherently and actively resist being stretched as they continually are in pressurized arterioles. Another hypothesis is that the basal tone of arterioles is the result of a tonic production of local vasoconstrictor substances by the endothelial cells that line their inner surface. Nevertheless, the arterioles have basal tone, and several factors externally influence it, including local influences, neural influences, and hormonal influences.


Autoregulation

The capacity of tissues to regulate their own blood flow is referred to as auto regulation. Most vascular beds have an intrinsic capacity to compensate for moderate changes in perfusion pressure by change in vascular resistance, so that blood flow remains relatively constant. The ability of vascular autoregulation is probably due in part to the intrinsic contractile response of smooth muscle to stretch (myogenic theory of autoregulation). That is, as the perfusion pressure rises, the blood vessels are distended and the vascular smooth muscle fivers that surround the vessels contract, which increases the vascular resistance so that the blood flow remains constant (Q = ΔP/R). At the last section of this thread you can find more detail information for the mechanisms and rationales about vascular autoregulation.


General Mechanisms for Activation of the Vascular Smooth Muscle

The task of the vascular smooth muscle is unique, because to maintain a certain vessel diameter in the face of the continual distending pressure of the blood within it, the vascular smooth muscle must be able to sustain active tension for prolonged periods. Compared with other muscle types, smooth muscle cells have these different characteristics, including:

1.Contract and relax much more slowly;

2.Can change their contractile activity as a result of either action potentials or changes in resting membrane potential;

3.Can change their contractile activity in the absence of any change in membrane potential;

4.Can maintain tension for prolonged periods at low energy cost;

and

5.Can be activated by stretch.


Local Influences on Basal Tone

Local factors influencing arteriolar basal tone (and the diameter of arterioles) include metabolic influences, endothelial cells, other chemical influences, and transmural pressure.

Metabolic Substances. The arterioles that control flow through a given organ lie within the organ tissue itself. Thus, arterioles and the smooth muscle in their walls are exposed to the chemical composition of the interstitial fluid of the organ they serve. The interstitial concentrations of many substances reflect the balance between the metabolic activity of the tissue and its blood supply. Exposure to low oxygen, and metabolic substances such as high H+, high K+, high CO2, high osmolarity, and adenosine, cause reduced arteriolar tone and vasodilation. By contrary, exposure to high oxygen and low metabolic substances induce increased arteriolar tone and vasoconstriction. When metabolic activity is over the blood supply, oxygen pressure in that tissue gets lower and the metabolic wastes accumulate in the tissue, which cause vasodilation of arterioles. As a result of arteriolar vasodilation, the blood supply to that tissue is improved and oxygen pressure gets back to normal or even higher, whereas increased amount of metabolic wastes are washed away by the improved blood flow therefore the accumulation of metabolic wastes is resolved. Finally, the basal tone gets back to normal.

Endothelial cells cover the entire inner surface of the cardiovascular system. A large number of studies have shown that the blood vessels respond very differently to certain vascular influences when their endothelial lining is missing. In the case of the vasodilator effect of infusing acetylcholine through intact vessels, the vasodilator influence produced by endothelial cells has been identified as nitric oxide. Nitric oxide is produced within endothelial cells from the amino acid, L-arginine, by the action of an enzyme, nitric oxide synthase. Nitric oxide synthase is activated by a rise in the intracellular level of the Ca2+. And nitric oxide is a small lipid-soluble molecule that, once formed, easily diffuses into adjacent smooth muscle cells where it causes relaxation by stimulating cGMP production.

Acetylcholine and several other agents such as bradykinin, vasoactive intestinal peptide, and substance P stimulate endothelial cell nitric oxide production because their receipts on endothelial cells are linked to receptor-operated Ca2+ channels. Probably more importantly from a physiological standpoint, flow-related shear stresses on endothelial cells stimulate their nitric oxide production presumably because stretch-sensitive channels for Ca2+ are activated. Such flow-related endothelial cell nitric oxide production may explain why, for example, exercise and increased blood flow through muscles of the lower leg can cause dilation of the blood-supplying femoral artery at points far upstream of the exercising muscle itself.

One general unresolved issue with the concept that arteriolar tone is regulated by factors produced by arteriolar endothelial cells is how these cells could know what the metabolic needs of the downstream tissue are. This is because the endothelial cells lining arterioles are exposed to arterial blood whose composition is constant regardless of flow rate or what is happening downstream. One hypothesis is that there exists some sort of communication system between vascular endothelial cells. That way, endothelial cells in capillaries or venules could telegraph upstream information about whether the blood flow is indeed adequate.

Other local chemical influences. Many specific locally-produced and locally-reacting chemical substances have been identified that have vascular effects and therefore could be important in local vascular regulation in certain instances. In most cases, however, definite information about the relative importance of these substances in cardiovascular regulation is lacking. Prostaglandins are a group of several chemically related products of the cyclooxyrgenase pathways of arachidonic acid metabolism, which have vasoactive effects. Certain prostaglandins are potent vasodilators, while some are potent vasoconstrictors. However, despite the vasoactive potency of the prostaglandin and the fact that most tissues are capable of synthesizing prostaglandins, it has not been demonstrated convincingly that prostaglandins play a crucial role in the normal vascular control.

Histamine is synthesized and stored in high concentrations in secretory granules of tissue mast cells and circulating basophils. When released, histamine produces arteriolar vasodilation (via the cAMP pathway) and increases vascular permeability (by causing separations in the junctions between the endothelial cells that line the vascular system), which leads to edema formation and local tissue swelling. Other effects that histamine plays include stimulation of sensory nerve endings to produce itching and pain sensation.

Bradykinin is a small polypeptide that has approximately ten times the vasodilator potency of histamine on a molar basis. It also acts to increase capillary permeability by opening the junctions between endothelial cells. Bradykinin is formed from certain plasma globulin substances by the action of an enzyme, kvllikrein, and is subsequently rapidly degraded into inactive fragments by various tissue kinases.

Transmural pressure. The effect of transmural pressure on arteriolar diameter is more complex because arterioles respond both passively and actively to changes in transmural pressure. For example, a sudden increases in the internal pressure within an arteriole produces: 1.first an initial slight passive mechanical distention, and 2.then an active constriction that, within seconds, may completely reverse the initial distention. A sudden decrease in transmural pressure elicits essentially the opposite response, that is, an immediate passive decrease in diameter followed shortly by a decrease in active tone, which returns the arteriolar diameter to near that which existed before the pressure change. The active phase of such behavior is referred to as a myogenic response, because it seems to originate within the smooth muscle itself. The mechanism of the myogenic response is not known for certain, but stretch-sensitive ion channels on arteriolar vascular smooth muscle cells are likely candidates for involvement.


Examples of Local Regulation

Active Hyperemia – In organs with a highly variable metabolic rate, such as skeletal and cardiac muscles, the blood flow closely follows the tissue's metabolic rate. For example, skeletal muscle blood flow increases within seconds of the onset of muscle exercise and returns to control values shortly after exercise ceases. This phenomenon, which is illustrated in Figure 7-3A, is known as exercise or active hyperemia. Active hyperemia could be explained by mechanisms related to local metabolic theory and to local flow-related shear stresses theory.Screen Shot 2015-07-17 at 8.11.32 PM

Reactive Hyperemia – In this case, the higher-than-normal blood flow occurs transiently after the removal of any restriction that has caused a period of lower-than-normal blood flow and is sometimes referred to as post occlusion hyperemia. The phenomenon is illustrated in Figure 7-3B. For example, flow through an extremity is higher than normal for a period after a tourniquet is removed from the extremity. Both local metabolic and myogenic mechanisms may be involved in producing reactive hyperemia.

Autoregulation talks about the arterioles' reaction to the changes of the perfusion pressure. Except when displaying active and reactive hyperemia, nearly all organs tend to keep their blood flow constant despite variations in arterial pressure – that is, they autoregulate their blood flow. For example, an abrupt increase in arterial pressure is normally accompanied by an initial abrupt increase in organ blood flow that then gradually returns toward normal despite the sustained elevation in arterial pressure. The later autoregulation that returns the flow toward the normal level is caused by a gradual increase in active arteriolar tone and resistance to blood flow. Ultimately, a new steady state is reached with only slightly elevated blood flow because the increased driving pressure is counteracted by a higher-than-normal vascular resistance. The mechanisms for autoregulation are believed to be both local metabolic feedback theory and myogenic theory. Also, tissue pressure hypothesis of blood flow auto regulation for which it is assumed that an abrupt increase in arterial pressure causes transcapillary fluid filtration and thus leads to a gradual increase in interstitial fluid volume and pressure. Presumably the increase in extravascular pressure would cause a decrease in vessel diameter by simple compression. This mechanism might be especially important in organs such as the kidney and brain whose volumes are constrained by external structures.